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Abstract

There is increasing evidence that dysregulation of energy homeostasis is associated with colorectal carcinogenesis. Epidemiological data

have consistently demonstrated a positive relation between increased body size and colorectal malignancy, whereas mechanistic studies have

sought to uncover obesity-related carcinogenic pathways. The phenomenon of binsulin resistanceQ or the impaired ability to normalize plasma

glucose levels has formed the core of these pathways, but other mechanisms have also been advanced. Obesity-induced insulin resistance

leads to elevated levels of plasma insulin, glucose and fatty acids. Exposure of the colonocyte to heightened concentrations of insulin may

induce a mitogenic effect within these cells, whereas exposure to glucose and fatty acids may induce metabolic perturbations, alterations in

cell signaling pathways and oxidative stress. The importance of chronic inflammation in the pathogenesis of obesity has recently been

highlighted and may represent an additional mechanism linking increased adiposity to colorectal carcinogenesis. This review provides an

overview of the epidemiology of body size and colorectal neoplasia and outlines current knowledge of putative mechanisms advanced to

explain this relation.

Family-based studies have shown that the propensity to become obese is heritable, but this is only manifest in conditions of excess

energy intake over expenditure. Inheritance of a genetic profile that predisposes to increased body size may also be predictive of colorectal

cancer. Genomewide scans, linkage studies and candidate gene investigations have highlighted more than 400 chromosomal regions that may

harbor variants that predispose to increased body size. The genetics underlying the pathogenesis of obesity are likely to be complex, but

variants in a range of different genes have already been associated with increased body size and insulin resistance. These include genes

encoding elements of insulin signaling, adipocyte metabolism and differentiation, and regulation of energy expenditure. A number of

investigators have begun to study genetic variants within these pathways in relation to colorectal neoplasia, but at present data remain limited

to a handful of studies. These pathways will be discussed with particular reference to genetic polymorphisms that have been associated with

obesity and insulin resistance.
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1. Introduction

Obesity is a result of positive benergy balanceQ and

prevails in conditions of energy excess. As a consequence of

major economic, social and technological changes, many
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populations find themselves in environments characterized

by abundant calorie-rich food and low physical activity

requirements. As a result, obesity is rapidly approaching

epidemic proportions in many parts of the world and has

become a major public health concern. At present, more

than 1 billion people are overweight, whereas more than

300 million people worldwide can be classified as obese

[with body mass index (BMI) of 30 kg/m2 or higher] [1].

Over the past 40 years, the prevalence of obesity in the

United States has increased from around 13% to 30% [2].

Two thirds of the American population is overweight, and

this trend is mirrored in most other western populations. A
chemistry 17 (2006) 145–156



Fig. 1. A plot of age standardized colorectal cancer incidence vs. obesity

prevalence (%) for 23 countries. *ASR, age standardized rates. Colorectal

cancer ASR (2002) and obesity prevalence (percentage of the population

with a BMI 30 kg/m2 or more) data were obtained from IARC [4,5] .

Fig. 2. Proposed mechanisms that link energy balance and colorectal cancer

(HbA1c, glycated hemoglobin).
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global comparison reveals the highest obesity rates in the

United States, Europe and the Middle East and the lowest in

sub-Saharan Africa and East Asia [3].

Mounting epidemiological evidence suggests that obesity

is associated with cancer, particularly cancer of the color-

ectum. Indeed, consensus panels have cited bconvincing Q
evidence for obesity as a cause of colorectal cancer [4]. In

parallel to the geographic variation seen in obesity rates

worldwide, colorectal cancer incidence is highest in affluent

industrialized countries such as the United States, Australia

and Western Europe and lowest in India and sub-Saharan

Africa [5]. In concordance with ecological data that have

demonstrated rapid increases in colorectal cancer in

populations with positive energy balance (Fig. 1), experi-

mental data have indicated that energy intake contributes to

colorectal cancer etiology. Data from animal models

suggests that overnutrition augments colorectal carcinogen-

esis, whereas caloric restriction reduces colorectal tumor

incidence [6,7].

In recent years, several hypotheses have emerged to

explain this relationship. The notion of binsulin resistanceQ
or the impaired ability to normalize plasma glucose levels

has formed the core of these hypotheses, but other related

mechanisms have also been advanced (Fig. 2). As we

move forward into an era of greater understanding of the

human genome, there is a strong impetus to identify

susceptibility genes for body size. Family-based studies

suggest that the heritability of body size is substantial: up

to 80% of the variability in BMI can be accounted for by

genetic factors [8]. The identification of genetic variants

that confer susceptibility to obesity may not only enhance

knowledge of the biology that underlies its development,

but may also lead to the discovery of genes that

predispose to colorectal malignancy in the general

population. This review will focus on the putative

mechanisms that link increased body size to colorectal

cancer. In addition, the paper will provide an overview of

candidate genes for obesity and colorectal neoplasia.
2. Epidemiological studies of body size and colorectal

cancer

Cohort and case-control studies have consistently dem-

onstrated a positive relation between body size and

colorectal cancer. A report published in 2002 by IARC

evaluated all available studies on obesity and colorectal

cancer risk and found elevated risks in men and women with

risks being stronger for men than women [4]. Of the eight

case-control studies on BMI and colorectal cancer published

to date, all reported relative risks greater than one for

overweight (BMIN25 kg/m2) or obese individuals

(BMIN30 kg/m2) compared with normal weight individuals

(BMI 18.5–25 kg/m2) apart from one study that found an

inverse association between BMI and colorectal cancer risk

among females [9–15] and one that reported no association

[16]. Similarly, for the 10 prospective cohort investigations,

all reported a positive association between BMI and

colorectal cancer, with relative risks in the range of 1.2 to

3.4 [17–26]. In general, the association has proven stronger

for cancer of the colon than the rectum and for the distal

than the proximal colon. Body size also seems to influence

early stages of colorectal carcinogenesis: BMI has been

associated with colorectal adenoma and, in particular, large

adenomas of the distal colorectum in seven epidemiological

studies [16,27–32].

There is evidence to suggest that abdominal or visceral

adiposity is a risk factor for colorectal cancer independent

of BMI. Indeed, waist to hip ratio (WHR) or waist

circumference appear to be superior indicators of obesity

than BMI, particularly in older individuals. One recent

study conducted among men reported a 2.1-fold increased

risk of colon cancer for men comparing a high WHR to

those with a low WHR, whereas a high BMI (N29.2 kg/m2)

conferred a 1.7-fold increased risk of colon cancer

compared to a BMIb24.8 kg/m2 [33]. Following adjust-

ment for BMI, a large prospective study found a twofold

elevated risk for colorectal cancer among men and women



M.J. Gunter, M.F. Leitzmann / Journal of Nutritional Biochemistry 17 (2006) 145–156 147
with a waist size greater than 99.1 cm compared to a waist

size less than 83.8 cm [26].

3. Macronutrient intake, physical activity and colorectal

cancer

The maintenance of a healthy body weight is determined

by the ratio of energy intake to energy expenditure. An

excess of energy input over energy output results in positive

energy balance and leads to weight gain. Disturbance of

energy balance leads to various metabolic perturbations,

which may be related to colorectal carcinogenesis. Energy is

consumed primarily in the form of macronutrients such as

carbohydrates, protein and fat, which are ultimately

converted into glucose molecules that enter oxidative

metabolic pathways. The energy released during this

process is coupled to the synthesis of adenosine triphosphate

(ATP) — the universal currency of energy expenditure.

High intake of energy has been associated, albeit inconsis-

tently, with colorectal cancer risk in several epidemiological

studies. In general, case-control studies have reported a

positive association between energy intake and colorectal

cancer risk, whereas cohort studies have been null

[16,18,34,35]. In addition, a number of studies have

investigated the relation between intake of the main sources

of energy, such as carbohydrate and fat, and colorectal

cancer risk. Dietary glycemic load, a quantitative measure of

the glycemic effect of food, has been positively associated

with colorectal cancer risk in several cohort and case-control

studies [35–38]. The positive relationship observed between

dietary fat and colorectal carcinogenesis in animal studies

has failed to be substantiated by epidemiological inves-

tigations [39]. Excess energy intake can be compensated for

by an increase in physical activity in order to maintain

energy balance. Indeed, an inverse relationship between

physical activity and colorectal cancer risk has been

consistently demonstrated [40].

4. Biological mechanisms linking body size to colorectal

cancer

4.1. Insulin resistance

The term insulin resistance refers to a state of cellular

unresponsiveness to the effects of insulin with higher levels

of insulin required to normalize plasma glucose. Insulin

resistance is believed to underlie a cluster of metabolic

perturbations, including elevated levels of blood triglycer-

ides and glucose, low levels of high-density lipoprotein

cholesterol and high blood pressure. It was noted some

years ago that many of the risk factors for becoming insulin

resistant coincide with those for colorectal cancer, particu-

larly high BMI, a sedentary lifestyle, a diet rich in energy,

red meat and saturated fat, and low in fiber and fruits and

vegetables. Concurrent with this, there is observational and

experimental evidence for a direct link between insulin

resistance and colorectal neoplasia.
Observational studies have focused on several distinct

markers of insulin resistance and their association with

colorectal neoplasia. The occurrence of diabetes mellitus

Type 2 (T2DM), a disease that arises when insulin resistance

coincides with impaired pancreatic insulin secretion, has

been positively associated with colorectal cancer. Type

2 diabetics have up to a threefold increased risk of colorectal

cancer compared with nondiabetics [41], and colon cancer

patients exhibit glucose intolerance and insulin resistance

[42]. Furthermore, serum levels of C-peptide (the cleaved

product of proinsulin and marker of insulin secretion),

glycated hemoglobin and glucose have all been positively

associated with colorectal neoplasia [43– 47]. In addition,

plasma levels of insulin-like growth factor I (IGF-I), the

bioactivity of which may be enhanced by increased insulin

levels, have been positively associated with colon cancer

[48]. Several metabolic consequences of the insulin-resistant

state, including hyperinsulinemia, hyperglycemia, hyper-

triglyceridemia and increased plasma levels of non-

esterified fatty acids (NEFAs), have been positively

associated with colorectal cancer among fasting subjects

in prospective studies [49,50].

At least three mechanisms exist through which insulin

resistance potentially causes colorectal cancer. The elevated

concentrations of plasma insulin, triglycerides, NEFA and

glucose associated with insulin resistance lead to increased

insulin exposure of nonclassical insulin target tissues that

express insulin receptors, such as the colon. This can

potentially have a number of consequences. First, insulin is

known to have growth as well as metabolic effects, and data

from a variety of sources suggest that insulin is functionally

involved in colorectal carcinogenesis [51–53]. Specifically,

insulin stimulates proliferation and reduces apoptosis in

colorectal cancer cell lines [54,55], and it promotes

colorectal tumor growth in animal models [56–58]. Upon

binding to its receptor, insulin initiates a signal transduction

cascade, which results in not only translocation of the

GLUT4 receptor to the cell surface (thereby facilitating

glucose uptake), but also increased proliferation and

decreased apoptosis via the mitogen-activated protein kinase

(MAPK) and phosphatidylinositol 3-kinase (PI-3K) path-

ways, respectively [59]. Because the colon does not

represent a classical insulin-target tissue, the colonocyte

may lack a specific mechanism through which the mitogenic

actions of insulin are regulated, as is the case in classical

insulin target tissues such as skeletal muscle, adipose tissue

and liver. Thus, elevated insulin signaling in the colonocyte

may engender an enhanced proliferative state with tumor-

igenic consequences.

Second, in conjunction with the metabolic effects of

insulin, the increased concentrations of available energy

substrates such as glucose, triglycerides and NEFA may

provide increased energy for transformed colonocytes as

well as induce changes in cell signaling pathways. Elevated

intracellular levels of triglycerides and their metabolites

such as diacylglycerol may activate the protein kinase-C and
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MAPK pathways with potentially mitogenic and carcino-

genic effects [60]. Triglycerides and other fat metabolites

are known to affect the activity of peroxisome proliferator-

activated receptors (PPARs), a class of transcription factors

that play key roles in lipid, glucose and energy home-

ostasis and in adipocyte differentiation regulation. Peroxi-

some proliferator-activated receptors have antiproliferative,

proapoptotic and anti-inflammatory effects [61]. Peroxi-

some proliferator-activated receptor gamma (PPAR-g) is

expressed in colonic tissue and inhibits the growth and in-

creases the differentiation of colonic tumors [62]. In ad-

dition, PPAR-g plays a key role in insulin sensitization, and

several functional variants of PPARG have been associated

with T2DM [63].

Increased energy availability may also contribute to

colon carcinogenesis by stimulating reactive oxygen species

synthesis. An intracellular lipolytic environment rich in

oxidizable substrates may result in the generation of lipid

oxidation products, depleted levels of antioxidants and an

overall environment of oxidative stress [64]. Hyperglycemia

may also increase oxidative stress [65]. In support of this,

DNA damage is known to be higher in diabetic individuals

compared with healthy subjects [66].

Third, insulin resistance causes alterations in the IGF

system with concomitant effects on cellular growth path-

ways. Insulin and IGF are representative of energy

availability and stimulate anabolic pathways, leading to cell

growth and differentiation. In the hyperinsulinemic state,

IGF-binding protein (IGFBP) levels decrease, whereas free

IGF-1 levels rise [67]. The colon expresses IGF receptors,

and following activation by IGF binding, colonocyte

apoptosis is inhibited and cell cycle progression ensues.

Elevated levels of IGF may therefore provide a selective

growth stimulus, causing clonal expansion of epithelial cells

with abnormal growth regulation. High circulating levels of

IGF-1 have been positively associated with colorectal

cancer risk, whereas high IGFBP-3 levels are associated

with reduced risk [48,53]. Furthermore, sufferers of

acromegaly, a condition characterized by overproduction

of IGF and growth hormone (GH), have increased risk of

developing colorectal cancer [68]. Obesity has also been

associated with perturbations in the bioavailability of

plasma androgens and estrogens mediated by several

mechanisms. In response to insulin resistance, enhanced

IGF-1 activity in the liver inhibits hepatic sex hormone

binding globulin synthesis leading to increasing levels of

circulating sex hormones such as estrogen and testosterone.

In addition, insulin and IGF-1 stimulate sex hormone

synthesis by the gonads and adrenal glands [69]. Observed

gender differences in the relation of body size and colon

cancer may be explained, in part, by alterations in sex

hormone levels.

4.2. Chronic inflammation

Obesity is associated with a state of chronic inflamma-

tion, induced perhaps by excessive production of storage
lipids and high circulating levels of glucose, both of which

create a proinflammatory oxidative environment [70,71].

The relation between obesity and inflammation was

demonstrated by the finding that adipocytes constitutively

express the proinflammatory cytokine tumor necrosis factor

a (TNF-a), and that TNF-a expression in adipocytes

of obese rodents is markedly increased [72]. This finding

was subsequently replicated in humans, and it has since

been shown that BMI and plasma TNF-a, C-reactive

protein (CRP) and interleukin 6 (IL-6) levels are highly

correlated [73].

Traditionally, adipose tissue had been thought of as an

inert storage repository for fat and triglycerides. The notion

of the adipocyte as a more active entity emerged from the

discovery of badipokinesQ such as leptin, resistin, adipo-

nectin, adipsin, visfatin, IL-6 and TNF-a, which are

produced by adipocytes and function to regulate adipocyte

homeostasis and metabolism. Under conditions of increas-

ing adiposity, macrophages are known to accumulate in

white adipose tissue, possibly in response to increasing

levels of chemotactic signals from the adipocyte. This leads

to the secretion of a range of proinflammatory peptides from

adipocytes and macrophages. Compared to lean people,

adipose tissue of the obese expresses higher quantities of

proinflammatory molecules such as TNF-a, IL-6, inducible

nitric oxide synthase, CRP and monocyte chemotac-

tic protein-1.

There is emerging evidence that chronic inflammation is

causally associated with colorectal neoplasia. Among

patients with idiopathic inflammatory bowel disease, colo-

rectal cancer incidence rates increase progressively over

time, reaching 19% after 30 years of disease [74].

Conversely, habitual use of nonsteroidal anti-inflammatory

drugs confers a 40–50% reduction in disease risk [75].

Furthermore, data suggest that elevated levels of CRP

predict colorectal cancer incidence [76,77], though not all

studies have demonstrated a positive relation [78]. It should

be noted, however, that the elevated levels of serum

inflammatory markers observed in some of these studies

may also be due to the presence of a subclinical tumor. In

addition to observational data, there is direct evidence to

suggest that inflammation in the colon leads to DNA

damage and the promotion of carcinogenesis [79,80].

Because obesity and chronic inflammation are related to

colorectal cancer and obesity engenders a proinflammatory

state, one may hypothesize that inflammation lies on the

causal pathway linking obesity to colorectal cancer.

In addition to this direct relationship, chronic inflamma-

tion induced by obesity may also be related to colorectal

neoplasia via an insulin resistance mechanism. There is a

growing body of evidence that describes a correlative and

causative relationship between inflammation and insulin

resistance [81]. Serum levels of CRP and c-peptide, insulin,

glucose and glycated hemoglobin are positively correlated

[82], whereas high levels of IL-6 and CRP predict T2DM

incidence [83]. Tumor necrosis factor-a promotes insulin



Table 1

Examples of groups of candidate genes for obesity and insulin resistance

Pathway Gene Polymorphism Variant phenotype

Insulin signaling INS �315 (ins) T2DM [91,92]

�596 VNTR Obesity, T2DM

INSR Val985Met T2DM, obesity [93]

IRS1 Gly972Arg Insulin resistance

IRS2 Gly1057Asp T2DM, BMI [96,97,103]

PI3K Met326Ile Insulin resistance [107]

IGF system IGF1 �969[CA](n) A IGF1, body fat [108,109]

IGF2 ApaI BMI [114]

Visceral fat [112]

Adipokines and regulators of

adipocyte metabolism

and differentiation

ACDC T+45G T2DM [132]

G+276T T2DM [133]

LEP A19G,G-2548 Obesity [128,129]

TNF G-308A WHR, obesity [117–119]

PPARG Pro12Ala BMI, WHR, leptin, body fat, T2DM [135,136

Peripheral regulation of

energy expenditure

and homeostasis

UCP1 �3826G BMI, WHR [146]

UCP-2 G-866A T2DM [148,149]

z TG, cholesterol [147]

UCP-3 C-55T BMI [143–145]

ADRB2 Arg16Gly Body weight increase [154]

Gln27Glu BMI [156]

Thr164Ile Lipolysis [157]

ADRB3 Trp64Arg WHR, BMI, T2DM [150–152]
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resistance in a number of insulin-responsive tissues, and

animal models have demonstrated that obese tnf �/� mice

are protected from obesity-induced insulin resistance

[72,84]. Mechanistic work has shown that TNF-a lies at

the core of the association between obesity and insulin

resistance. Phosphorylation of tyrosine residues of insulin

receptor substrate 1 (IRS-1) upon activation of the insulin

receptor is a critical step in insulin signaling. It had been

noted that this phosphorylation step is reduced in obesity,

and it has since been demonstrated that TNF-a inhibits

tyrosine phosphorylation, effectively blunting insulin sig-

naling and engendering an insulin-resistant state [85,86]. In

addition, TNF-a induces sustained suppressor of cytokine-

signaling protein 3 synthesis. Suppressor of cytokine-

signaling protein 3 inhibits insulin signaling by reducing

IRS-1 phosphorylation and inhibiting its association with PI-

3K [87]. Tumor necrosis factor a and IL-6 have also

been shown to stimulate lipolysis in adipocytes, leading

to hypertriglyceridemia [88]. Intracellular fatty acids can

inhibit IRS-Tyr phosphorylation, thereby blunting the insu-

lin signal [89]. Increasing adiposity leads to enhanced syn-

thesis of proinflammatory cytokines, such as TNF-a, which

attenuate insulin signaling and cause insulin resistance.
5. Candidate genes for increased body size

The tendency to become overweight or obese is clearly

heritable, as evidenced by family, twin and adoption studies

[90]. The penetrance of genetic variants that predispose to

weight gain is only evident under favorable environmental

conditions. These conditions of abundant calorie-rich food

and a sedentary lifestyle are what many human beings

currently experience at this time. Humans evolved in an
]

environment where food was often scarce; hence, a

phenotype that favored adiposity and the tendency to retain

energy as fat was selected for. It has been posited that this

bthrifty genotypeQ hypothesis, that is, the inheritance of

alleles that provided increased energy storage in the past, is

now deleterious to health. Carriage of a particular set of

genetic variants, which lead to increased energy storage and

obesity, may also predispose to colorectal cancer.

A large number of candidate genes exist, which

potentially influence energy balance and may therefore

mediate the relation between obesity and colorectal cancer.

To date, candidate gene searches, linkage studies and

genomewide scans have identified more than 400 chromo-

somal regions that have been associated with obesity, and it

is generally believed that a combination of genetic variants,

each exerting modest effects, underlies the obesity pheno-

type. These genes may be classified according to the

pathways upon which they act. The following sections

outline a selection of these genes and pathways with

particular reference to common variants identified in those

genes that are associated with obesity and insulin resistance

(see also Table 1).

5.1. Genes involved in insulin signaling

Insulin action is the result of a complex series of signaling

events. The engagement of insulin with its receptor activates

the insulin receptor tyrosine kinase domain, which leads to

phosphorylation of tyrosine residues on the IRS molecules.

Binding of the activated IRSs to downstream target mole-

cules, such as PI-3K, leads to stimulation of several signal

transduction pathways. These pathways, such as transloca-

tion of glucose transporters to the cell membrane and

activation of pro-proliferative and anti-apoptotic pathways,
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mediate the cellular effects of insulin. Common variants in

genes of the insulin-signaling cascade may contribute to

insulin resistance susceptibility. Much of the knowledge that

exists on common variants of insulin-signaling genes and

insulin resistance and obesity originates from the search to

identify susceptibility alleles for T2DM.

Variants of the insulin gene (INS) have been associated

with birth weight, BMI and WHI [91]. A variable number of

tandem repeats (VNTR) polymorphism, which is in linkage

disequilibrium with a translation initiation codon, has been

associated with levels of mRNA transcripts, lower preva-

lence of T2DM and higher concentrations of insulin in

obese children [92].

The insulin receptor (INSR) is a strong candidate gene for

insulin resistance, considering its important functional role

and the high frequency of INSR mutations in conditions of

severe insulin resistance. Despite this, there is very little

evidence to implicate common variants of INSR in T2DM.

The Val985Met polymorphism has been associated with

T2DM in two Dutch populations, but prevalence of the

variant allele is low and is unlikely to contribute significantly

to insulin resistance in the general population [93]. INSR is a

very large gene, encompassing 80 kb of DNA and the

existence of variants within the noncoding regions, which

may contribute to insulin resistance cannot be ruled out.

The IRS genes are among the best characterized of the

insulin-signaling cascade. The IRS1 gene has been inten-

sively studied as a candidate gene for insulin resistance and

T2DM. A number of nonsynonymous amino acid changes

have been identified in IRS-1 with varying functional

consequences. The Gly972Arg substitution lies adjacent to

two tyrosine phosphorylation sites that bind the p85 subunit

of PI-3K. Functional studies have demonstrated that the

Arg972 variant confers a 40% reduction in IRS-1 associated

PI-3K activity and a 25–40% decrease in binding of the

p85 subunit to IRS-1 [94,95]. Despite extensive investiga-

tion in several populations, the Gly972Arg polymorphism

does not appear to be strongly associated with T2DM. This

polymorphism has, however, been associated with a type of

T2DM characterized by obesity and severe insulin resistance

[96,97]. Furthermore, there is evidence to suggest that this

variant may contribute to colorectal cancer. A large study

conducted in the United States found carriage of the Arg972

allele of IRS1 to be positively associated with colon cancer

[98]. IRS2 has also been studied with respect to T2DM risk.

Homozygous disruption of this gene in a murine model

yields an insulin-resistant phenotype with similarities to

T2DM [99]. Three nonsynonymous amino acid substitutions

have been identified, but none have been linked to T2DM

risk or insulin resistance [100–102]; however, an IRS2

haplotype has been associated with obesity [103].

The PI3K gene encodes phosphatidylinositol-3-kinase,

an enzyme that engages and is activated by IRS to generate

several phosphorylated inositol-signaling molecules.

Among insulin-resistant and Type 2 diabetic individuals, a
reduction in the activity of this enzyme has been observed

[104]. The identification of insulin resistance susceptibility

variants in this gene has been hampered by the sheer

complexity of this protein. The enzyme comprises a

catalytic subunit (p110) coupled to a regulatory subunit

(p85), of which two isoforms exist encoded by different

genes. Furthermore, a third regulatory subunit has been

identified (p55g), along with splice variants of p85a [105].

A Met326Ile amino acid substitution that occurs at relatively

high frequency within the p85a isoform lies in close

proximity to an SH2 domain that interacts with IRS [106].

The less frequent Ile326 allele has been associated with

insulin resistance [107].

5.2. Genes involved in the GH/IGF pathway

A number of common variants in the GH/IGF pathway

have been reported, some of which appear to predict

circulating levels of components of the GH/IGF axis.

Alleles that increase levels of IGF are hypothesized to

increase colorectal cancer risk due to an enhanced mitogenic

effect. Homozygosity for the IGF1 (CA)19 repeat polymor-

phism, located 1-kb upstream of the transcription start site,

is associated with lower circulating levels of IGF-1 [108].

This variant has also been linked to body fat mass and

changes in fat-free mass in response to endurance training

[109]. The IGF1 (CA)19 polymorphism has been inconsis-

tently associated with colorectal cancer. The IGF1 192/192

genotype is protective against colon cancer risk among

individuals with high physical activity [110]. Carriage of the

IGF1 non-192 allele in conjunction with the IRS1*972R

allele was associated with a two-fold increased risk of colon

cancer in a study conducted by Slattery et al. [98]. Variation

at the IGF2 locus on chromosome 11p15 has been

associated with muscle mass and fat deposition [111],

visceral adiposity [112], circulating IGF-2 levels [113] and

BMI [114]. A haplotype bearing an IGF2 variant, the INS

VNTR Class III allele and a TH (tyrosine hydroxylase)

variant is associated with percentage fat, fat mass and

increased risk of the metabolic syndrome in a study

conducted in the United Kingdom [115]. An association

between the T1663A polymorphism of the GH1 gene and

risk of colorectal cancer has been reported [116].

5.3. Genes involved in the regulation of adipocyte

metabolism and differentiation

The adipocyte secretes a range of peptides that affect not

only adipocyte metabolism, but also act on both central and

peripheral targets to influence energy metabolism. Tumor

necrosis factor is a pro-inflammatory cytokine and adipo-

kine, secreted by adipocytes and macrophages in response

to stress or infection. The principal physiological function of

TNF-a is to stimulate recruitment of neutrophils and other

cells of the innate immune system to sites of infection or

irritation. Binding of TNF-a to its receptor initiates a signal

transduction cascade leading to activation of NF-nB and

transcription of inflammatory genes. TNF has also been
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proposed as a candidate gene for obesity and insulin

resistance. The TNF gene is highly polymorphic, and several

common variants are known to render changes in TNF-a

expression levels. In addition, TNF variants have been

associated with percentage body fat, obesity and insulin

resistance [117–119].

Leptin is a small adipocyte-derived hormone that trans-

mits information on the size of energy stores to the brain and

is believed to be a critical regulator of energy balance. The

metabolic properties of leptin are believed to originate in its

activation of 5V-AMP activated protein kinase with subse-

quent pro-catabolic and anti-anabolic effects. Overfeeding

stimulates large increases in serum leptin levels, whereas

caloric restriction leads to the converse [120,121]. Serum

leptin levels are positively correlated with body mass, insulin

resistance and insulin concentrations [122–124]. Interesting-

ly, leptin also has mitogenic properties and has been shown to

stimulate growth of colon cancer cells [125]. Further

evidence for a role of leptin in obesity-induced colorectal

cancer came from a Norwegian study, which found a positive

association between incident colorectal cancer risk and serum

levels of leptin [126]. The LEP gene is the homologue of the

murine Ob gene, and homozygosity for a mutation in Ob

causes severe obesity in mice. Although the LEP region of

chromosome 7 has been linked with BMI, it is unlikely that a

single mutation in LEP causes obesity in humans. Several

common variants in LEP have been identified — each

conferring modest associations with obesity. A five-marker

LEP haplotype comprising probable transcription factor

binding sites has been associated with obesity [127]. Other

LEP polymorphisms that have been linked to obesity include

the A19G and G-2548A substitutions [128,129].

Adiponectin is an adipocyte-derived cytokine, and its

expression is suppressed in obesity. In addition to its insulin-

sensitizing properties, adiponectin possesses anti-inflamma-

tory roles and inhibits macrophage adhesion to endothelia.

Reduced presence of adiponectin in adipose tissue may

therefore engender insulin resistance through increased

macrophage-induced inflammation. The adiponectin gene

(ACDC) lies on a region of chromosome 3 that has been

linked to Type 2 diabetes susceptibility [130,131]. Two

common polymorphisms in ACDC, T45G in exon 2 and

G276T in intron 2, have been associated with obesity, T2DM

and insulin resistance in a number of studies [132,133].

Peroxisome proliferator-activated receptor gamma is a

transcription factor receptor that regulates several genes

involved in glucose homeostasis, lipid metabolism, inflam-

mation and tumorigenesis. Activation of PPARg enhances

insulin sensitivity, and pharmacological activators of

PPARg such as thiazolidinediones are used to treat T2DM

[134]. Further evidence as to the role played by PPARg in

insulin resistance came from the identification of loss-of-

function mutations in PPARG that cause insulin resistance

[135]. Interestingly, a nonsynonymous single nucleotide

polymorphism termed Pro12Ala has been associated with

elevated insulin sensitivity, despite reduced receptor activity
among *Ala-carriers [136]. Furthermore, pparg�/� knock-

out mice are protected against high-fat diet-induced obesity

and insulin resistance [137]. Variation at the PPARG locus

has been associated with BMI, WHR, circulating leptin

levels and T2DM. In addition, the Pro12Ala polymorphism

has been linked to colorectal cancer and adenoma risk

[138,139], and loss of function heterozygous mutations of

PPARG have been identified in tumors from human

colorectal cancer patients [62].

5.4. Genes involved in regulation of energy expenditure

The energy imbalance that results in obesity is caused by

an excess of energy input over energy output. In humans,

energy expenditure is represented by resting metabolic

requirements, physical activity and adaptive thermogenesis.

The genetics of physical activity are likely to be complex

and integrate both physiological and behavioral mecha-

nisms. The propensity to be physically active certainly

varies between individuals, but there is scarce data on the

genetic basis for this variation thus far.

Adaptive thermogenesis entails the expenditure of energy

as heat and seeks to maintain the body temperature within a

narrow, physiologically viable range. The mitochondrial

respiratory chain yields potential energy in the form of a

proton gradient, which may be harnessed by the ATP

synthase but can also be dissipated as heat by the action of a

set of uncoupling proteins (UCPs). To date, three members

of the UCP family have been identified with varying tissue

distribution, but little is known of their function in humans.

A C(�55)T polymorphism of the UCP3 gene has been

linked to fat distribution [140–142] and BMI [143–145],

whereas a variant in the 5V-region of UCP1 has been

associated with obesity [146]. Carriage of the UCP2*-866A

allele has been linked to elevated triglyceride and choles-

terol levels [147]. Polymorphisms of UCP2 have been

associated with risk of T2DM [148,149].

The h-adrenoceptors regulate adaptive thermogenesis,

integrating peripheral signals from the sympathetic nervous

system to the adipose tissue. This important role in the

regulation of energy expenditure has prompted many

researchers to investigate whether variants of beta-adrenor-

eceptor (ADRB) genes encoding the beta-adrenergic recep-

tors are linked to body size. The ADRB3*Arg64 allele has

been associated with obesity in some [150–152] but not all

studies [153,154]. Several variants of the ADRB2 gene have

also been linked to obesity, although not all studies have

found associations. Three ADRB2 polymorphisms that lead

to nonsynonymous amino acid substitutions in the ADRB2

have been associated with weight gain [155], BMI [156]

and serum triglyceride and insulin levels [157].
6. Conclusions and perspective

Obesity is a result of an imbalance between energy intake

and expenditure and integrates environmental and genetic

factors. The worldwide obesity phenomenon that has been
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attributed to bwesternizationQ has been paralleled by

dramatic increases in the incidence of colorectal cancer in

the previous two or three decades, and mechanistic and

observational work have implicated increased body size as a

risk factor for colorectal cancer. Among the putative

mechanisms advanced to explain this relation, insulin

resistance and its plethora of metabolic consequences have

been studied most intensively. In addition, the emergence of

the notion that obesity is an inflammatory disease has

provided an additional mechanism, which may mediate the

obesity-colorectal cancer relation.

Advances in genomics have permitted the identification

of chromosomal regions and genes, which bear obesity-

associated variants. In combination with candidate gene

approaches to identifying obesity-related loci, studies have

highlighted potential body-size susceptibility loci and have

provided clues to mechanisms, which may underlie the

pathogenesis of obesity. Preliminary findings require repli-

cation, and exploration of pathways beyond those described

here warrants attention. Potential areas of future work

include the components of the lipostatic regulatory system

such as orexigenic and anorexigenic signals. In addition, the

genetics of physical activity is a relatively uncharted

domain. Further elucidation of the genetic and biological

determinants of obesity may facilitate appropriate pharma-

cological and dietary interventions targeted at pathways

related to increased colorectal cancer risk.
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